6-025

ディジタルマンモグラフィにおける AEC の動作の検討

○前原 日向子¹⁾、石井 美枝²⁾、永見 晶子¹⁾、西村 真世¹⁾、氏平 武樹¹⁾、山本 泰司¹⁾
 1)島根大学医学部附属病院
 2)岐阜医療科学大学 放射線技術学科

【目的】マンモグラフィは AEC を利用して撮影を 行っている。アナログの時代は AEC によって被写体 厚に関係なくコントラストと粒状性は一定に保たれて いた。一方、ディジタルシステムでの AEC は画質に 関係なく検出器への入射線量を一定に保っている。

今回、ディジタルマンモグラフィシステムで AEC の動作について検討評価した。

【使用機器】乳房撮影置:INSTRUMENTARIUM社 製 alphaRT、画像処理装置:FUJIFILM社製 FCR PROFECT CS、IP:FUJIFILM社製 HR-BD、線量 計:Radcal Accu-Dose 2186 検出器10×5-6M、被 写体:アクリルファントム(250 mm×300 mm)、コント ラスト物質:アルミニウム(純度99%)

【方法】

- (1) セミオートの mAs 値を求めた。
- (2) セミオートの条件を再現するため、それぞれの mAs 値の前後の mAs 値で線量測定を行い(n = 5)2点間の内挿によって、セミオートでの mAs 値の被写体への入射線量を求めた。検出器への入 射線量はディジタル特性曲線を作成し算出。
- (3) CNR 測定用試料は(2)と同様に試料を作製し(n = 3)その試料から前後の CNR を計算、その2点間の内挿によってセミオートの mAs 値での CNR を算出。
- (4) 以上から求めた条件をもとに被写体への入射線量、 検出器への入射線量、算出した CNR から、AEC の動作を調査した。撮影条件を以下に示す。
 - Target/Filter: Mo/Mo、Mo/Rh 管 電 圧: 25kV、30kV、35kV 被 写 体 厚: 20mm、45mm、70mm 管電流時間積: セミオートの mAs 値

【結果】Mo/Moの線量とCNRの測定結果をFig.1~ 3に示す。Mo/RhもMo/Moと同様の結果であった。

検出器への入射線量は、Target/Filter、被写体厚、 管電圧の変化に関与せず、ほぼ一定の60µGyであった。

被写体への入射線量は被写体厚が厚いと多くなり、 管電圧が高いと低くなった。管電圧 30kV、70mm厚の Mo/Mo での被写体への入射線量は、検出器への入射 線量の約800倍、Mo/Rh では 567倍であった。

CNR は Target/Filter に関係なく、管電圧が高くなると低下し、また被写体厚が厚くなると低下した。
 【考察】AEC は検出器への入射線量を一定に保っていた。照射した X 線のうち、画像に寄与した X 線は

Fig.3 Mo/Mo 70mm厚の線量とCNR

Mo/Moで0.1%~3%、Mo/Rhで0.2%~5%であっ た。Mo/RhはMo/Moに比べて、照射したX線が効 率よく使用されていた。以上から、検出器に到達する X線と被曝線量を考慮して撮影条件(使用する Target/Filter)を選択すべきである。今回の実験か らは45mmの厚さでのCNRで差が小さく、Mo/Rhを 使用する方が被曝低減に繋がると推測する。

【結語】被写体厚が厚くなると CNR は低下する。画 質を一定に保つために、AGD の許容の範囲内で照射 線量を増加させるために、撮影条件(AEC の条件)を 変える必要があると考えられる。

CR-mammographyの CNR 測定における ROI size の影響

○石井 美枝¹⁾、吉田 彰²⁾、石井 里枝³⁾、眞田 泰三⁴⁾、永見 晶子⁵⁾
 1)岐阜医療科学大学 保健科学部 放射線技術学科、2)県立広島大学 大学院 総合学術研究科、3)徳島文理大学保健福祉学部 診療放射線学科、4)岡山済生会総合病院 画像診断科、5)島根大学医学部附属病院 放射線部

【背景・目的】近年、ディジタルマンモグラフィの画 質指標として、CNR がよく使用されている。CR シ ステムを用いた CR-MMG では、照射野内に X 線強 度の不均一性(トレンド)があり、CNR 値への影響が 懸念されている。トレンドの低減には、ROI size の 縮小も有効と考えられる。今回、IEC ガイドライン による CNR 法において、ROI size の縮小による CNR 値への影響を検討したので報告する。

【使用機器】乳房撮影装置: alpha RT (INSTRUMEN-TARIUM)、CR system: FUJI PROFECT CS、IP: FUJI HR-BD、IEC phantom、Contrast 物 質: Al: 99.9%

【方法】IEC の CNR 測定法に準拠した方法で得た linearized pixel value (各3枚)の160,000 (400 × 400)点 のデータを使用した。このデータを1/1、1/4、1/16、 1/64、1/256 にしたとき (ROI size の縮小)の CNR を 算出した。ROI size 縮小時には、1、4、16、64、256 個の ROI の mean、SD を平均し、全データを使用した。 ROI のピクセル値の分布を Fig.1 に、1/4分割例を Fig.2 に示す。

【結果】ROI size と CNR の関係を Fig.3に、Contrast、 Noise の関係を Fig.4に示す。ROI size の縮小に伴い、 Noise は減少し、CNR は増加した。AGD が約2mGy となる線量(63mAs)では、ガイドラインの ROI size による CNR に対し、ROI size を1/256にしたときに は約8% 増加した。

【考察】ROI内の低周波のトレンドをFig.2に示す。 ROI size が大きいときには、ROI内のSDに低周波 のトレンドが含まれる。しかし、Fig.2ように ROIを 分割すると、ROI内のトレンド成分が減少する。ROI size を縮小することにより、SD が小さくなるフィル タ効果が認められた。

【結語】ROI size の縮小により、ROI 内の低周波のト レンド成分が除去され、SD の減少により、CNR は 増加した。

【参考文献】

Alsager A. Young K.C. Oduko J.M. Impact of heel effect and ROI size on the determination of contrast-to-noise ratio for digital mammography systems. Proc. of SPIE Vol. 6913, 91341, 2008

Fig.2 ROI 内の分布と ROI 分割

Fig.4 Contrast and Noise

6-027 DMQC ファントムを用いたマンモグラフィ適正撮影条件の検討

○櫻川 加奈子、山田 健二、天野 雅史、多田 章久 徳島大学病院 診療支援部 診療放射線技術部門

【目的】当院で提供できる最も高品質で低線量なマン モグラフィ画像を得るための手法を検討する。
【方法】乳房撮影装置はシーメンス社製 MAMMO-MAT Novation^{DR}を使用した。実験に使用したファン トムは日本乳がん検診精度管理中央機構製 DMQC ファントムで、内部には CNR (Contrast Noise Ratio) 評価用試料として厚さ0.2mm、純度99.5%の A1板が含 まれている。ファントムの撮影条件はターゲット/フィ ルタの組み合わせ(Mo/Mo、Mo/Rh)、管電圧(26、 28、30、32、34kV)、mAs 値(16、32、63、125、250、 400(34kV のときのみ)、450(32kV のときのみ)、500 (26、28、30kV のときのみ))とし、各組み合わせの撮 影条件において CNR を求める。CNR は DMQC ファ ントムの使用方法に準じて撮影・解析し求めた。
【結果】管電圧ごとに CNR と mAs の関係を求めた。

一例として Mo/Mo での結果をグラフに示す (Fig)。

グラフより mAs 値が大きくなるにしたがって CNR は高くることがわかった。Mo/Rh の場合も同様 の傾向を示した。また各条件で最も高い CNR を得る ことのできる mAs 値とその時の CNR をまとめる (Table.1)。

【考察】結果より、当院の撮影装置で出力可能な CNR を求めた。CNR は線量が増加するにつれて大きな値 を示し続けた。しかし、臨床での使用を考慮した場合 線量に制限をかける必要がある。IAEA の診断参考レ ベル「AGD が3mGy を超えないこと」を参考とした 場合の撮影条件で得られる CNR を最適条件として考 察した。以下に AGD が3mGy となる場合の撮影条件 と、その際の表面入射線量、CNR を示す(Table.2)。

	Table.1 出力可能な最大線量と CNR		
	管電圧 [kV]	mAs 値	CNR
	26	500	22.9
	28	500	25
Mo/Mo	30	500	25.8
	32	450	24.6
	34	400	22.7
	26	500	21.6
	28	500	23.5
Mo/Rh	30	500	24.4
	32	450	23.6
	34	400	22.4

Table.2 AGD3mGyの撮影条件と表面入射線量とCNRとの関係

	管電圧 [kV]	mAs 値	表面入射線量 [mGy]	CNR
Mo/Mo	26	164.8	17.6	12.9
	28	123	16.6	12.5
	30	94	15.6	11.9
	32	75.8	15.1	11.3
	34	61.9	14.5	10.5
Mo/Rh	26	185.3	14.3	13.4
	28	135.7	13.5	13.3
	30	103.8	13	12.8
	32	83.1	12.6	12.3
	34	69.6	12.5	11.8

どの管電圧であっても Mo/Rh の方が CNR は高く、 表面入射線量が少ないため、Mo/Rh の方が撮影に適 していると考察した。結果、最も表面入射線量が少な い Mo/Rh の 34kV が本検討に使用した PMMA 厚 40 mmの撮影に最も適していると考えた。

【まとめ】今回提案した手法より PMMA 厚40 mm、 AGD3mGy での適正撮影条件は Mo/Rh、34kV、 69.6 mAs であるとわかった。

6-028

マンモグラフィ適正撮影条件の検討

○山田 健二、櫻川 加奈子、天野 雅史、多田 章久 徳島大学病院 診療支援部 診療放射線技術部門

【目的】平均乳腺線量(AGD)を3mGyとした場合の CNR(contrast noise ratio)と表面入射線量の関係よ り PMMA(polymenthyl methacrylate)厚50、30 mm におけるマンモグラフィの適正撮影条件の検討を行う。 【使用機器】乳房撮影装置は、シーメンス旭メディ テック株式会社製 MAMMOMAT Novation^{DR}、電位 計・イオンチェンバは、Radcal 社製 Radiation Monitor model 9015・10X5-6M、CNR 測定用ファントム として乳がん検診精度中央管理機構製 DMQC ファン トム(CNR 評価試料(厚さ0.2 mm、AI 純度 99.5%))、 解析ソフトは、DMQC ファントム付属画像データ解 析ソフトと Microsoft 製 Excel2010を使用した。

【方法】ファントムの撮影条件はターゲット/フィルタの 組み合わせ(Mo/Mo、Mo/Rh)、管電圧(26、28、30、 32、34kV)、mAsはAGDが3mGyとなる線量を用い るために装置で設定可能な3mGyを越える値と3mGy を越えない値を使用した。CNRはDMQCファントムの 使用方法に準じて撮影・解析し求めた。PMMA厚50、 30mmは、ファントムの厚さ調整用PMMA板の枚数を 調節し作成した。これらの結果より、AGDが3mGy時 のCNRを近似式より算出した。またこの際の表面入射 線量も同様に求めた。最適撮影条件は、CNRと表面入 射線量より検討した。

【結果】各撮影条件において AGD3mGy、PMMA 厚 50、30mmの結果を Table.1 と Table.2 にまとめる。

【考察】結果より AGD3mGy 一定とした場合、管電圧 が低い撮影条件のほうが高い CNR を得ることができた。 しかし表面入射線量は高い値を示した。今回の検討で は、AGD が同じ3mGy でも表面入射線量が高い撮影 条件を用いる事は、入射面(皮膚面)への部分的な被ば く増大に繋がっていると考え、表面入射線量が最も少な い撮影条件が適していると考えた。よって、PMMA 厚 50 mm では Mo/Rh、34kV、90.0 mAs また PMMA 厚 30 mm では Mo/Rh、34kV、52.2 mAs が AGD3mGy の 最適撮影条件であると考えた。また AGD を一定とした 場合、Mo/Rh の組み合わせを選択し、なるべく高い管 電圧の撮影条件を用いることで、表面入射線量が少な く CNR の良い画像を得る事ができると示唆された。 【まとめ】今回提案した手法により AGD が3mGy の場 合、表面入射線量が最小で CNR が大きい撮影条件は、 PMMA 厚 50 mm では、Mo/Rh、34kV、90.0 mAs であ り、PMMA 厚 30 mm では、Mo/Rh、34kV、52.2 mAs であると決定することができた。

Table.1 AGD3mGy、PMMA 厚 50 mm での mAs、表面入射線量、 CNR

	管電圧 (kV)	mAs	表面入射線量 (mGy)	CNR
Mo/Mo	26	219.7	23.4	9.7
	28	162.2	21.9	9.4
	30	123.5	20.5	8.8
	32	99.1	19.7	8.4
	34	80.5	18.9	7.9
Mo/Rh	26	240.9	18.6	10.5
	28	176.3	17.6	10.4
	30	134.9	16.9	10.2
	32	107.8	16.3	9.7
	34	90.0	16.1	9.1

Table.2 AGD3mGy、PMMA 厚 30 mm での mAs、表面入射線量、 CNR

	管電圧 (kV)	mAs	表面入射線量 (mGy)	CNR
Mo/Mo	26	118.9	11.9	16.9
	28	88.2	11.1	16.5
	30	68.7	10.7	15.9
	32	55.6	10.3	15.0
	34	45.8	10.0	14.1
Mo/Rh	26	136.6	9.8	16.8
	28	101.0	9.4	16.7
	30	77.5	9.0	16.3
	32	62.3	8.8	15.7
	34	52.2	8.7	15.1